Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Pathol ; 28(5): 595-602, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-28987033

RESUMO

Mutation in the triggering receptor expressed on myeloid cells (TREM) 2 gene has been identified as a risk factor for several neurodegenerative diseases including Alzheimer's disease (AD). Experimental studies using animal models of AD have highlighted a number of functions associated with TREM2 and its expression by microglial cells. It has therefore been assumed that this is also the case in humans. However, there is very limited information concerning the cellular expression of TREM2 in the human brain. As part of investigations of microglia using post-mortem resources provided by the Medical Research Council Cognitive Function and Ageing Studies (MRC-CFAS), we immunostained the cerebral cortex of 299 participants for TREM2 using the Sigma antibody HPA010917 and compared with the macrophage/microglial markers Iba1 and CD68. As expected, Iba1 and CD68 labeled microglia and perivascular macrophages. However, in most cases (284/299), the TREM2 antibody labelled monocytes within vascular lumens, but not microglia or perivascular macrophages. In contrast, in 5 out of 6 cases with acute infarcts, TREM2 immunoreaction identified cells within the brain parenchyma interpreted as recruited monocytes. Six cases with old infarcts contained phagocytic foamy macrophages which were CD68-positive but TREM2 negative. Our observations, using the HPA010917 anti-TREM2 antibody, suggest that TREM2 is not expressed by microglia but instead seems to be a marker of recruited monocytes in the human brain. This finding has implications with regards to the role of TREM2 as a risk factor, emphasizing the importance of systemic immune responses in the development and progression of Alzheimer's disease.


Assuntos
Córtex Cerebral/metabolismo , Glicoproteínas de Membrana/metabolismo , Monócitos/metabolismo , Receptores Imunológicos/metabolismo , Idoso , Idoso de 80 Anos ou mais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Infarto Encefálico/metabolismo , Infarto Encefálico/patologia , Proteínas de Ligação ao Cálcio , Córtex Cerebral/patologia , Estudos de Coortes , Proteínas de Ligação a DNA/metabolismo , Demência/metabolismo , Demência/patologia , Feminino , Humanos , Imuno-Histoquímica , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Proteínas dos Microfilamentos , Microglia/metabolismo , Microglia/patologia , Monócitos/patologia , Baço/metabolismo , Baço/patologia
2.
J Neuroinflammation ; 13(1): 135, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27256292

RESUMO

BACKGROUND: Genetic risk factors for Alzheimer's disease imply that inflammation plays a causal role in development of the disease. Experimental studies suggest that microglia, as the brain macrophages, have diverse functions, with their main role in health being to survey the brain parenchyma through highly motile processes. METHODS: Using the Medical Research Council Cognitive Function and Ageing Studies resources, we have immunophenotyped microglia to investigate their role in dementia with Alzheimer's pathology. Cerebral cortex obtained at post-mortem from 299 participants was analysed by immunohistochemistry for cluster of differentiation (CD)68 (phagocytosis), human leukocyte antigen (HLA)-DR (antigen-presenting function), ionized calcium-binding adaptor molecule (Iba1) (microglial motility), macrophage scavenger receptor (MSR)-A (plaque-related phagocytosis) and CD64 (immunoglobulin Fcγ receptor I). RESULTS: The presence of dementia was associated positively with CD68 (P < 0.001), MSR-A (P = 0.010) and CD64 (P = 0.007) and negatively with Iba1 (P < 0.001). Among participants without dementia, the cognitive function according to the Mini-Mental State Examination was associated positively with Iba1 (P < 0.001) and negatively with CD68 (P = 0.033), and in participants with dementia and Alzheimer's pathology, positively with all microglial markers except Iba1. Overall, in participants without dementia, the relationship with Alzheimer's pathology was negative or not significant, and positive in participants with dementia and Alzheimer's pathology. Apolipoprotein E (APOE) ε2 allele was associated with expression of Iba1 (P = 0.001) and MSR-A (P < 0.001) and APOE ε4 with CD68, HLA-DR and CD64 (P < 0.001). CONCLUSIONS: Our findings raise the possibility that in dementia with Alzheimer's pathology, microglia lose motility (Iba-1) necessary to support neurons. Conversely, other microglial proteins (CD68, MSR-A), the role of which is clearance of damaged cellular material, are positively associated with Alzheimer's pathology and impaired cognitive function. In addition, our data imply that microglia may respond differently to Aß and tau in participants with and without dementia so that the microglial activity could potentially influence the likelihood of developing dementia, as supported by genetic studies, highlighting the complexity and diversity of microglial responses.


Assuntos
Doença de Alzheimer/patologia , Citocinas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Demência/patologia , Metionina Sulfóxido Redutases/metabolismo , Microglia/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/complicações , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Proteínas de Ligação ao Cálcio , Estudos de Coortes , Demência/complicações , Diagnóstico , Feminino , Antígenos HLA-DR/metabolismo , Humanos , Masculino , Entrevista Psiquiátrica Padronizada , Proteínas dos Microfilamentos , Testes Neuropsicológicos , Receptores de IgG/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...